If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-9x-1800=0
a = 1; b = -9; c = -1800;
Δ = b2-4ac
Δ = -92-4·1·(-1800)
Δ = 7281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7281}=\sqrt{9*809}=\sqrt{9}*\sqrt{809}=3\sqrt{809}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{809}}{2*1}=\frac{9-3\sqrt{809}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{809}}{2*1}=\frac{9+3\sqrt{809}}{2} $
| 3m-14=4(m=6) | | -(2k+8)=-8(1+4K) | | 1/n+1=6/n | | 6z-7z=4z-4+z | | 6-2^x+x-6x+3=0 | | 18=6-2r | | 3x-15x^2+18x=0 | | 1x-6=6x-8 | | 7x/x-3+1/x=7 | | X=3x-15x^2+18x | | (x+1)(x-1)=x(x+1)-(x+1) | | 28/x=-7 | | (3x-4)+(64-x)=10 | | 6y-8=5y+42 | | 2(z–4)=8 | | (x+1)(x-1)=x(x+1)-(x-1) | | 7×-(2+3x)=18 | | 3/10x-4x+6/5=3/5 | | 22p^2+88=0 | | 2(v+2)=6 | | 3x+1-1-9^x+6x+1=0 | | k^2-5k+2=-2 | | 7-c=23 | | 35-x=36 | | m=200-m+32 | | 5x+9=57 | | 4(w^2-7)(w^2+4)=0 | | -2(-5)+1=y | | 22x^2+88=0 | | 3x(2x-5)-4x=6x+1 | | -43x-19=44-79x | | 0.25n=0.1n=9.8 |